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Abstract. It is shown that the Hamiltonian H of the hydrogenic anion has no bound state
at the threshold in the triplet S-sector. This extends a result of Hill who showed that H
has only an essential spectrum in the triplet sector.

We consider the Schrodinger operator describing the hydrogenic anion
Hz_%Al_%Az_rlhl_rz_l*"l_zl (1)

on L*(R®, dx, dx,), x, e R®, r; =|x,| (i=1,2), ri=|x,—x,. A few years ago Hill (1977)
showed among other results that there is no bound state ¢ in the triplet S-sector
satisfying (H — E)¢ =0 for E < —3. By bound state we mean L*-solution and by triplet
S-sector we denote the restriction of L*(R®) to the class of functions

M={fe Lz(RG, dx, dxz)V(xl, xy) = —f(x3, %)), f=f(r1, 12y r12)}. (2)

Note that H has essential spectrum [—3, ).
In this paper we extend the above result in the following way.

Theorem 1. Suppose ¢ € M and satisfies
(H+3)¢y =0 (3)
on R® with H given by (1). Then ¢ =0.

Before giving the proof of the theorem some remarks might be appropriate:

(i) Stillinger (1966) conjectured this result on numerical grounds.

(ii) Theorem 1 should be compared to a result obtained by Hoffmann-Ostenhof
et al (1983). In this paper the Hamiltonian H(A)=~3A,~3A,—r;'—r;'+ Ar;; on
LA(R®, dx, dx,) has been considered with the smallest A>0, so that H(A) has only
essential spectrum. It was proven that H(A) has an L*-solution at the bottom of its
spectrum. Critical for this result was that A > 1 (because the hydrogen ion has a bound
state). This fact was used to show that (loosely speaking) an electron far from the
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nucleus feels an effective potential by which binding could be deduced. However, in
the present case no such mechanism will be available.

Proof of theorem 1. Suppose indirectly that ¢ # 0. Since ¢ solves (3) it follows (see
e.g. Simon 1982) that ¢ € H*(R®), the domain of the Hamiltonian H. (For a definition
of the Sobolev space H*(R®) see e.g. Reed and Simon 1975.) Then due to Hill's result
(1977) we have

—%=f Lr;fﬂ (fs HN/ (£ 1) = (g, HY)/ (b, 4). (4)
However, it is obvious that f(r,, r,, r,,) =0 for r, = r, for all fe M. This, together with
(4), implies that ¢ is the ground state of the Dirichlet problem (3) in the domain
x> |x,| (resp. |x,]<|x,|). Such a ground state is non-degenerate and can be chosen
to be non-negative (see e.g. Reed and Simon 1978). Further by Harnack’s inequality
(see Aizenman and Simon 1982) it is positive. Therefore we can choose ¢ >0 for
x> |x,| and ¢ <0 for |x;|<|x,).

Next we need the following lemma.

Lemma 1. Let g:R* xR* >R with g = g(r,, r,, ©), where ri, = ¥ +r2—=2r,r,c08 0, -7 <
O < 7 and define

(g)(r, r2) =3 J‘: g dcos ©. (5)
Let

f(r, ) =explln ¢(r), rp, ©)] for ry,<r (6)
where € C2({(x,, x;) €R®, 0< r,<r}) and ¢ >0 for r,<r,, then

[Ay/¥)=Af/f for r;<r,. (7)

Proof. This lemma is analogous to a result derived by Lieb (1981, lemma 7.17). Taking
into account that for real valued ge C?

211 9 d 1 i} d
Ag=Y =|—{r— —( sin ®—
g ,Z‘] r? |:6rl (r, ar, g) +sin <) BG)(Sm ®8®g>] )

wor- £ |G () ] )

(see e.g. Hylleraas 1964) the proof runs in the same way as Lieb’s proof.

and

Applying lemma 1 to equation (3) and noting that
[ra]=r! for ry<<r,, (10)
we obtain

(_AI-A2+1_2r2_l)f20 fOl‘ r2<r1. (11)
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Now we consider
(A, =2r5' +1)p(r)) =0 with ¢(r) =7 ""%e™ " (12)
Multiplying inequality (11) from the left by ¢ and integrating over |x,|<r,, it is

straightforward to calculate that

-A, J ; ¢f dx; +4mrio(r)(@f/or = of/or)| .-, = 0. (13)

In the following we shall denote

U(rl)'—'J‘l i of dx,. (14)

By a result of Kato (1957) [Vy| is bounded in R®. It follows easily that
Waf/ar —af/or)| =< C for =R >0, (15)

since

O 902l er, = im [£(1i, 7, = )/ = )= —exp{inlim [y(r,, r,— b, ©)/ ]}

= _exp{ln[_ad/(rl: ra, ®)/ar2]‘r2=rl} (16)

and analogously for af/arll,f,l. Inserting (15) into (13) and taking into account (12)
we arrive at

-Ajv+e =0 for r,=R (17
with some 0 <a <1 and R large enough.
Next we need the following lemma.
Lemma 2. Let v be given according to (14), then for arbitrarily small § >0 and
sufficiently large R, there is some C(R), such that
v(r)=C(R)e™ ™" for r,=R. (18)

Proof. First we note that for 0<<r,< R <o there is a ¢x(r;) >0, (¢, dr) =1 which
solves the Dirichlet problem

(—A,=2r;' +1=8R)pr =0 (19)

in the ball Bg(0) = {x,eR’|r, < R}, with some 8z > 0. Due to the variational principle
dr~ 0 for R—» 0. Define

“R(’|)=J orY dx;, (20)

with ¢ given according to (3). Obviously ug >0 for »,> R. Since ¢ obeys (3) and is
by assumption in L* it follows from a result of Simon (1982) that ¢ - 0 for r, > and
therefore ug -0 for r, >o. Now we can use the same differential inequality techniques
as derived by Hoffmann-Ostenhof (1979) to obtain (—A,+8)ug =0 for all &> &,
with r> r,, rs sufficiently large, from which

ug(r)=C(R)e™® for r,>R @2n
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follows for some C(R)>0. Finally we shall show that

v(r)= C(R)ug(ry) for r,> R (22)
for some C(R)>0 which together with (21) verifies (18). Evidently

v(r,)zjl | ¢>fdx2>‘ inRwﬁ ¢ dx, forn=R,>R. (23)
x;l<R Xal<

x5]<R

Let B={(x}, x5) e R* xR?, |x| —x,[*+|x2*< R?} and let Q= {(x,, x,) eR* XR’, r,<r},
then for r,= R, > R we have B< (). Since ¢ >0 in Q and obeys (3) we obtain by
Harnack’s inequality (Aizenman and Simon 1982) for some C(R)>0

inf (x;, xé)?irgfwz C(R)sup y¢
B

[x3/= R

= C(R) sup ¢(x,, x5)= C(R)¥(x,, x;) for b=R<R,<r. (24)

[x2l=R

Combining (23) with (24) we arrive at
v(r)= C(RY(x,, x,) for n<Rs<sr, (25)

with some C(R)>0. Multiplying (25) by ¢z and integrating over x, (22) results.

Applying lemma 2 to inequality (17) we arrive at
~Av+ePip=0 for ,=R (26)

with some 0< B8 <1. Let w=rv and u,, =r""c,, m >0 with (w—u,,)(r,,) > 0 for some
r, > 0 with suitable ¢,,> 0. Then

—w'+e Pw=0 ~u"+e Pru=<o for r>r,, m>0 @27

for r,, sufficiently large. We are going to show now that w= u,, for r=r,. Suppose
indirectly that there is some 7,, > r,, such that (u,,— w)(F,,) =0, u,<w for r, <r<F,
and (u,, — w)'(¥,)>0. Then u, —w is monotonously non-decreasing for r,, = r,, since
due to (27) it cannot have a maximum there. But u,, > 0 for r» 00 and w> 0, therefore
w-0 for r>0c0. Hence u,,—w- 0 for r-> o which is a contradiction.

Thus we have shown that v ¢ L?(R*).

By Jensen’s inequality (see e.g. Hayman and Kennedy 1976)

[vl=f for ,=ry. (28)
By (28) and by the Cauchy-Schwarz inequality we conclude

o r 2
J J. Y?dx, dx22(47r)3j. (J. o[u]r3 dr2> rfdn?J v? dx, = 0.
[xi/=R J|xqf=r R 0 Ix;|=R

Hence ¢ £ L*(R®), which contradicts our assumption.
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