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Absence of an L'-eigenfunction at the bottom of the spectrum 
of the Hamiltonian of the hydrogen negative ion in the triplet 
S-sector 
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i Institut fur Theoretische Physik, Universitat Wien, Boltzmanngasse 5 ,  1090 Wien, Austria 
t Institut fur Theoretische Chemie und Strahlenchemie, Universitat Wien, Wahringerstrasse 
17, 1090 Wien, Austria 

Received 20 June 1984 

Abstract. It is shown that the Hamiltonian H of the hydrogenic anion has no bound state 
at the threshold in the triplet S-sector. This extends a result of Hill who showed that H 
has only an essential spectrum in the triplet sector. 

We consider the Schrodinger operator describing the hydrogenic anion 

(1 )  H = -LA I -1 2 A 2 - r y ' - r T ' + r y i  

on L2(R6, dx, dx2), x, E R3,  r, = lx,I ( i  = 1, 2 ) ,  r ,2  = /x ,  -x2/.  A few years ago Hill (1977) 
showed among other results that there is no bound state CC, in the triplet S-sector 
satisfying ( H  - E ) +  = 0 for E < -:. By bound state we mean L*-solution and by triplet 
S-sector we denote the restriction of L2(R6) to the class of functions 

Ju = {.fE L2(R6, dx, dx,)lf(x,, x2) = -Ax,, x , ) , f = f ( r , ,  r2, r12)). (2) 

Note that H has essential spectrum [ - f ,  a). 
In this paper we extend the above result in the following way. 

Theorem 1. Suppose 4 E Ju and satisfies 

( H  + &I// = 0 

on R6 with H given by (1 ) .  Then CC, = 0. 
(3) 

Before giving the proof of the theorem some remarks might be appropriate: 
( i )  Stillinger (1966) conjectured this result on numerical grounds. 
( i i )  Theorem 1 should be compared to a result obtained by Hoffmann-Ostenhof 

et a1 (1983). In this paper the Hamiltonian H ( A )  = - + A ,  - + A 2 -  r ; ' - r ; '+Ar;d  on 
L2(R6, dx, dx2) has been considered with the smallest A > 0, so that H ( A )  has only 
essential spectrum. It was proven that H ( A )  has an L2-solution at the bottom of its 
spectrum. Critical for this result was that A > 1 (because the hydrogen ion has a bound 
state). This fact was used to show that (loosely speaking) an electron far from the 
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nucleus feels an effective potential by which binding could be deduced. However, in 
the present case no such mechanism will be available. 

Proof of theorem 1. Suppose indirectly that (I, f: 0. Since (I, solves (3) it follows (see 
e.g. Simon 1982) that $ E  H2(R6), the domain of the Hamiltonian H. (For a definition 
of the Sobolev space H2(R6)  see e.g. Reed and Simon 1975.) Then due to Hill’s result 
(1977) we have 

- i =  iqf ( A  H f ) / ( A f )  = ((I,, H$) / ($ ,  $1. (4) 
f e H  n,U 

However, it is obvious that f ( r l ,  r2, r I 2 )  = 0 for rI = r2 for all f E A. This, together with 
(4), implies that (I, is the ground state of the Dirichlet problem (3) in the domain 
/xII > lx21 (resp. Ixl/ < lx21). Such a ground state is non-degenerate and can be chosen 
to be non-negative (see e.g. Reed and Simon 1978). Further by Harnack’s inequality 
(see Aizenman and Simon 1982) it is positive. Therefore we can choose ( I , > O  for 
IxI1 > lx21 and (I, < 0 for lxll < IxzI. 

Next we need the following lemma. 

Lemma 1. Let g: R3 xR3 + [w with g = g( r l ,  r2, @), where r f 2  = r: + r: - 2rl r2 cos 0, -n  s 
@ S  7~ and define 

+ I  

[g]( rl ,  r2)  = 4 5 g dcos 0. 
- 1  

Let 

f (r1,  r2) = exp[ln $ ( r , ,  r2, @ ) I  for r2 < rl ( 6 )  

where $ E C*({(xl ,  x2) E R6, 0 < r2 < r l } )  and $ > 0 for r2 < r l ,  then 

[A*/ SI 2 A f l f  for r2< r l .  (7) 

ProoJ: This lemma is analogous to a result derived by Lieb (1981, lemma 7.17). Taking 
into account that for real valued g e  C2 

and 

(Vg)2 = [ (”)’ +-(-)’I 1 ag 
i = l  ari r f  a@ 

(see e.g. Hylleraas 1964) the proof runs in the same way as Lieb’s proof. 

Applying lemma 1 to equation ( 3 )  and noting that 

[ r ~ ; ]  = r;’ for r,< rl ,  

we obtain 

( -A ,  - A2 + 1 - 2 r ; ’ ) f  2 0 for r2< r l .  

(9) 
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Now we consider 

( -A2 - 2r ; l+  1) 4 ( r2 )  = 0 with 4(  r2) = T - " ~  e-r2. (12) 

Multiplying inequality (11)  from the left by 4 and integrating over ix21<rl, it is 
straightforward to calculate that 

-AI 5 4fdX2+4Tr:4(r,)(af/arl-af/ar2)1r~=,~ 2 0 .  (13) 
I+rl 

In the following we shall denote 

By a result of Kat0 (1957) lV$l is bounded in R6. It follows easily that 

l ( a f / a r ,  -af/ar2)lr2=rll C for rl 2 R > 0, (15) 
since 

? ~ f / d r ~ 1 ~ ~ = ~ ~  = "m [f(rl ,  r l  - h ) /  - h ]  = -exp{ln lim [ $ ( r l ,  rl - h, O ) / h ] }  
-0 h+O 

= -exp{In[-a$(r,, r2, @)/ar211r2=rlI (16) 

and analogously for df /dr l l r2=r l .  Inserting (15) into (13) and taking into account (12) 
we arrive at 

- A , v  +e-"'izO for r, 2 R (17) 

with some O <  a < 1 and R large enough. 
Next we need the following lemma. 

Lemma 2. Let v be given according to (14), then for arbitrarily small 6 > 0  and 
sufficiently large R, there is some C ( R ) ,  such that 

(18) v (  r l )  3 C( R )  e-"I for rI 3 R. 

Proo$ First we note that for 0 S r2 < R < 00 there is a 4R( r2)  > 0, ( 4R, 4 ~ )  = 1 which 
solves the Dirichlet problem 

(-A2 - 2r;l  + 1 - ~ R ) $ R  = 0 (19) 

in the ball B R ( 0 )  = {x2 E R31r2 6 R } ,  with some S R  > 0. Due to the variational principle 
S R + O  for R + m .  Define 

u R ( r I )  = 4 R $  dx2 (20) 

with $ given according to (3 ) .  Obviously uR > 0 for r l  > R. Since JI obeys (3) and is 
by assumption in L2 it follows from a result of Simon (1982) that JI + 0 for rl +CO and 
therefore uR + 0 for rl + W. Now we can use the same differential inequality techniques 
as derived by Hoffmann-Ostenhof (1979) to obtain ( -Al  + S)U, 3 0 for all S > SR,  
with r >  r,, r, sufficiently large, from which 

u R ( r I )  s C ( R )  e-sr for rl > R (21) 
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follows for some C ( R )  > 0. Finally we shall show that 

C(R)uR(rI) for rI  > R 

for some C ( R )  > 0 which together with (21) verifies (18). Evidently 

Let B={(x' , ,  x ; )EIW~XR~,  I X { - X , ~ ~ + ~ X S ~ ~ S  R2} and let R={(x, ,  x 2 ) ~ R 3 X R 3 ,  r2<rl},  
then for rl  3 RI > R we have B c R. Since (I, > 0 in R and obeys (3) we obtain by 
Harnack's inequality (Aizenman and Simon 1982) for some C ( R )  > 0 

inf (I,(xl,x;)3inf ( I , 3 C ( R ) s u p $  
bzlG R B 

3 C ( R )  SUP +(XI, C(R)(I,(x,, x2) for r 2 c  R < R I  < rl. (24) 
lxz1sR 

Combining (23) with (24) we arrive at 

4 r I )  3 C(R)(I,(x,, x2) for r2 e R S r, (25) 

with some C ( R )  > 0. Multiplying (25) by + R  and integrating over x2 (22) results. 

Applying lemma 2 to inequality (17) we arrive at 

- A , ~ + e - ~ ' i v a O  for r, 3 R (26) 

with some O<p < 1. Let w = rv and U, = rFmcm, m>O with ( w  -u,)(r,)>O for some 
r, > 0 with suitable c, > 0. Then 

w e 0  -u"+e-P'u s 0 for r > r,, m > 0 (27) - w ~ ~ + e - P r  

for r, sufficiently large. We are going to show now that w 3 U, for r 2 r,. Suppose 
indirectly that there is some F, > r,  such that (U, - w ) (  F,) = 0, U, s w for r, < r < F, 
and (U, - w)'( ?,) > 0. Then U, - w is monotonously non-decreasing for r, 3 r,, since 
due to (27) it cannot have a maximum there. But U, + 0 for r + CO and w > 0, therefore 
w + 0 for r + CO. Hence U, - w + 0 for r + CO which is a contradiction. 

Thus we have shown that u E  L2(R3) .  
By Jensen's inequality (see e.g. Hayman and Kennedy 1976) 

[(I,] 3.f for r 2 c  rl .  (28) 

By (28) and by the Cauchy-Schwarz inequality we conclude 

Hence (I, E L2(R6) ,  which contradicts our assumption. 
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